close
Blogtrottr
Yahoo!奇摩知識+ - 分類問答 - 科學常識 - 已解決
Yahoo!奇摩知識+ - 分類問答 - 科學常識 - 已解決 
Looking for something light while keeping you safe and comfortable during extended waterside activities?

Shop New Drainmaker Shoe for Men, Women and Kids at Columbia!
From our sponsors
數學科能力競賽 Part13
Jun 1st 2014, 04:11


因為 AM >= GM, 所以
(x + y)/2 >= (xy)^(1/2) 及 (x + y + z)/3 >= (xyz)^(1/3)
即 (x + y) >= 2*(xy)^(1/2) 及 (x + y + z) >= 3*(xyz)^(1/3)

(a/b + b/c)^2014 + (b/c + c/a)^2014 + (c/a + a/b)^2014
>= 2^2014 * [(a/b)(b/c)]^(2014/2) + 2^2014 * [(b/c)(c/a)]^(2014/2) + 2^2014 * [(c/a)(a/b)]^(2014/2)
 = 2^2014 * (a/c)^1007 + 2^2014 * (b/a)^1007 + 2^2014 * (c/b)^1007
 = 2^2014 * [(a/c)^1007 + (b/a)^1007 + (b/a)^1007]
>= 2^2014 * 3 * [(a/c)^1007 * (b/a)^1007 * (b/a)^1007]^(1/3)
 = 3 * 2^2014

所以 (a/b + b/c)^2014 + (b/c + c/a)^2014 + (c/a + a/b)^2014 >= 3 * 2^2014

This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers.

You are receiving this email because you subscribed to this feed at blogtrottr.com.

If you no longer wish to receive these emails, you can unsubscribe from this feed, or manage all your subscriptions
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 inswdemwp1 的頭像
    inswdemwp1

    2016[美食] 韓國超熱門零食[問題] 韓國旅遊必買清單&求推薦[遊記] 韓國必逛必買的東西跟店家[遊記] 韓國自助行,超市零食採買分享-

    inswdemwp1 發表在 痞客邦 留言(0) 人氣()